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B6nard convection of a two-component liquid is considered. The liquid displays Soret 
effects and the boundary temperatures are fixed to span the solidification 
temperature of the mixture. Near the lower, heated plate the material is liquid and 
near the upper cooled plate there is a layer of pure solid solvent; all the solute is 
rejected during freezing. Linear stability theory is used to determine the effects on 
the critical conditions for Soret convection in the presence of the solidified layer and 
the interface between solid and liquid. 

Experiments on mixtures of ethyl alcohol and water are performed using 
interferometry, photography and thermocouple measurements. The measured onset 
of instability to travelling waves at negative Soret coefficient compares well with 
those predicted by our linear theory. In the absence of ice the waves develop at finite 
amplitude to a fixed-amplitude state. However, when ice is present, these waves fail 
to persist but evolve to a state of steady finite-amplitude (overturning) convection. 
These differences are attributed to the presence of the ice and the nonlinear density 
profile of the basic state, both of which act as sources of non-Boussinesq effects. 

1. Introduction 
Convective mass transport in the liquid phase may determine the quality of 

technical materials when produced by controlled solidification. Typical examples are 
the growth of crystals from liquid solutions and the precision casting of ingots using 
directional solidification. The convection in the liquid, initiated by inhomogeneities 
of a temperature field, can change the local temperature and concentration fields a t  
the liquid/solid interface, deform the interface, and thus influence the local 
solidification process which is itself controlled by diffusion (Kurz & Fisher 1989; 
Rosenberger 1979). The present investigation will focus on the possibility of 
unsteady convection in the liquid phase and its impact on the deformation of the 
liquid/solid interface. 

A binary mixture subject to temperature gradients can generate concentration 
gradients as well. The Soret effect (Soret 1879; DeGroot & Mazur 1969) derives from 
the solute flux as a function of both gradients, so that an imposed temperature 
gradient can induce double-diffusive convection. The induced Soret solute flux may 
either add to or subtract from the imposed thermal gradient. In the latter case the 
opposing fields may generate oscillatory convective responses. 

Single-phase convection in binary mixtures with negative Soret coefficient has 

t Present address : Aachen Center for Solidification in Space, ACCESS e.V., Aachen, Germany. 
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been investigated intensively in the past two decades. Caldwell (1970, 1973, 1974) 
studies BBnard convection in sea water and finds a stabilizing effect of the thermal 
mass diffusion on the static state of heat conduction. From local temperature 
measurements within the layer he detects time-periodic temperature oscillations of 
small intensity when a critical condition for the static state is exceeded. For a fixed 
supercritical temperature difference the intensity and the period of oscillations 
increase monotonically in a transient phase until finally a permanent state of 
oscillatory convection is reached. Caldwell (1975, 1976) explores even smaller 
negative Soret coefficients using lithium-iodine solutions and observes similar 
phenomena. 

Hurle & Jakeman (1971) and Platten & Chavepeyer (1972a, b )  perform 
experiments in alcoholwater mixtures. They do not observe transient oscillatory 
states of varying frequency but describe stable permanent states of oscillatory 
convection of constant frequency. 

Alcohol-water mixtures have proven particularly easy to handle and have been 
utilized by numerous investigators (Walden et al. 1985; Kolodner et al. 1986, 
1987a, b ;  Surko et al. 1986; Ahlers, Cannell & Heinrichs 1987; Heinrichs, Ahlers & 
Cannell 1987 ; Steinberg, Moses & Fineberg 1987 ; Steinberg & Moses 1987 ; Fineberg, 
Moses & Steinberg 1988a, b,  1989; Bensimon et al. 1990) in their studies of the 
dynamics of convection in mixtures with Soret effects. In many of these recent 
experiments shadowgraphic methods have been employed to visualize the time- 
dependent behaviour of the cell pattern. The convection pattern is visualized from 
above through a transparent upper boundary of the test cell by generating 
shadowgraphs of the light reflected from the mirror polished bottom of the test cell. 
The main results from these experiments can be summarized as follows: 

(i) Immediately after the onset of weak convection for slightly supercritical 
temperature differences across the layer, the roll pattern starts moving in the 
horizontal direction perpendicular to the roll axis. The convection presents itself as 
a travelling wave (Walden et aE. 1985; Kolodner et al. 1986; Steinberg & Moses 1987; 
Moses, Fineberg & Steinberg 1987). The amplitude of the travelling waves may 
exhibit modulation (Heinrichs et al. 1987 ; Fineberg et al. 1988a, b) .  

(ii) The low-intensity state of travelling waves is unstable. In a transient period 
the intensity of the convective motion increases while the propagation speed of the 
wave motion decreases. 

(iii) At the end of the transient period a stable, permanent state of travelling 
waves is observed characterized by a constant phase velocity (Moses & Steinberg 
1986; Steinberg & Moses 1987). 

(iv) If the temperature difference across the layer is increased, the phase velocity 
of the stable state of travelling waves decreases. At another higher value of the 
temperature difference a smooth transition to steady convection, often called 
overturning convection, occurs (Linz et al. 1988; Moses & Steinberg 1986; Steinberg 
& Moses 1987; Ahlers & Rehberg 1986; Rehberg & Ahlers 1986; Sullivan & Ahlers 
1988a, b ) .  

In some of the cited experimental work cells of small lateral extent were used. A 
clear picture of the various travelling-wave effects is not always obtained, mainly 
because of the uncontrolled generation of and the interaction of travelling-wave 
patterns at  different locations in the cell. This experimental deficiency is largely 
eliminated by the annular type test cell used by Kolodner, Bensimon & Surko 
(1988~)  and Bensimon et al. (1990). Their test cell eliminates end effects in the 
azimuthal direction and so avoids azimuthal wave reflections. These experiments 
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realize travelling wave packets in both azimuthal directions. They observe modulated 
travelling waves generated by the interaction of wave packets of slightly different 
wavelength. They also find a permanent finite-amplitude state of azimuthally 
travelling waves of uniform intensity. Similar observations have been made by 
Heinrichs et al. (1987) and Ahlers et al (1987) in rectangular test cells in which one 
horizontal dimension is the largest of the box. Long-range material transport due to 
wave action has been identified by Moses & Steinberg (1988) by adding photochromic 
tracers to the liquid. 

Zimmermann (1990) and Zimmermann & Muller (1992) investigate linear and 
nonlinear convective phenomena in binary mixtures of ethyl alcohol and water in a 
shallow rectangular cell with one lateral dimension much longer than the other. They 
employ differential interferometry to visualize the density-gradient field, and 
thermocouples to sense the temperature fluctuations inside the liquid layer. They 
study the structure of the travelling waves, and the generation and reflection 
processes of the travelling waves at the ends of the test cell. They observe stable 
travelling-wave modes, consistent with earlier studies, as long as the mean 
temperature of the fluid is much larger than the solidification temperature T, of the 
mixture. However, when the mean temperature of the fluid is near enough to T,, the 
travelling waves are not permanent, but undergo a transition to steady (overturning) 
convection. They attribute these changes to the presence at  low temperatures of 
significant nonlinearities in the density-temperature profile of the basic state. 

The stability of the static state of a binary mixture with Soret effect was f i s t  
studied theoretically by Hurle & Jakeman (1969, 1971). Further investigations of 
this problem have been conducted by Platten (1971), Schechter, Prigogine 6 Hamm 
(1972), Legros, Platten & Poty (1972) and Platten & Chavepeyer (1972a, b) .  These 
authors base their stability analyses on the simplifying assumption that the 
concentration profile of the static state is linear and the separation ratio, 
characterizing the Soret effect, is constant everywhere in the mixture. Chock & Li 
(1975) solve the linear stability problem for a complete set of balance equations, 
describing the transport processes in mixtures. There are a number of more recent 
analyses, e.g. Linz & Lucke (1987), Zielinska & Brand (1987), Knobloch & Moore 
(1988) and Cross & Kim (1988). The essential result of the linear stability analyses 
can be summarized in terms of the Soret coefficient S as a measure of the intensity 
of thermal mass. There is a critical value S* of S such that AS* < 0. There are two 
cases that occur when the temperature difference across the layer exceeds a critical 
value. When S > S*, the static state is replaced by a state of steady convection. 
When S < S*, a state of oscillatory convection occurs. At S = S* both convective 
states merge a t  a codimension-two point. 

Weakly nonlinear theories for finite-amplitude convection in binary mixtures have 
been developed by Cross (1986 a)  and Ahlers & Lucke (1987). Although these authors 
assume stress-free and solute-permeable boundaries in their eight-mode model 
equations they do predict some typical dynamical features like travelling waves, 
modulated travelling waves, instability of standing waves, and variations of the 
frequency with amplitude as observed in experiments. Linz & Lucke (1987) have 
improved the eight-mode model by satisfying the zero-solute-flux condition at  the 
boundaries. Wave interaction has been included in a nonlinear analysis by Brand, 
Lomdahl & Newel1 (1986) and Brand & Steinberg (1984). They suggest that spatially 
irregular, oscillatory convection patterns observed in some experiments can be 
explained via a Benjamin-Feir instability. The effect of finite test-cell geometry on 
travelling wave convection has been investigated numerically by Deane, Knobloch 
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& Toomre (1988) and analytically by Cross (1986b, 1988). They find quiescent 
regions and standing wave patterns, respectively, in the neighbourhood of walls 
perpendicular to the direction of wave propagation for slightly supercritical heating 
conditions. 

The influence of BBnard convection on the liquid-solid interface in a partially 
solidified single-component layer has been studied by Davis, Muller & Dietsche (1984), 
Dietsche (1984), Dietsche & Muller (1985) and Grauer & Haken (1988). Experiment 
and weakly nonlinear theory show that beyond a certain critical temperature 
difference across the layer the static state of heat conduction is replaced in the liquid 
phase by convection in the form of rolls, if the solid layer is thin, and by convection 
in form of hexagonal cells, if the solid layer is thick. The thickness of the solid affects 
the thermal properties of the solid-liquid interface and hence affects the preferred 
mode of convection. 

In  the present work we consider BBnard convection of a binary mixture in which 
the temperatures of the horizontal boundaries span the solidification temperature of 
the mixture. There is a steady basic state in which the layer is partly liquid and 
partly solid, the interface between these is planar, and in which all transport is by 
conduction and diffusion. We examine the case in which the solidifying material 
completely rejects the solute so that the solid is pure solvent. We then examine the 
linear stability of the basic state and determine how the presence of solid and the 
ability of the material to solidify or melt under disturbance affects the critical 
conditions for the onset of instability. We then examine experimentally water-thy1 
alcohol mixtures for their onset properties. Both the theory and experiment are 
compared to cases when phase change is absent and to cases where phase change is 
present but Soret effects are absent. The experiment further probes the finite- 
amplitude state to which the system tends. 

2. Theory 
2.1. Formulation 

Consider the configuration sketched in figure 1 in which a pair of horizontal parallel 
plates of infinite horizontal extent are separated by a distance h, and acceleration due 
to gravity of magnitude g is directed downward. The lower plate at  z = 0 is fixed a t  
the temperature T = To while the upper plate at z = h is fixed at  temperature T = TI. 
The material between the plates is a two-component liquid if T > T, and pure solid 
if T < T,. Thus, the lean component is completely rejected when the liquid solidifies 
at the melting temperature T,. The layer is heated uniformly from below such that 
T, < T, < To, so there is a solid-liquid interface at z = 71 with 0 < 3 < h. The 
(constant) material properties are the density po, the specific heat c p ,  the thermal 
conductivity A,  thermometric conductivity K ,  kinematic viscosity u, and volume 
expansion coefficients a and a’ for thermal and concentration effects, respectively. 
The lean component has diffusivity D and Soret coefficient So. The sign of 8, is 
consistent with Platten & Legros (1984). For So > 0 the more dense component 
diffuses toward the cold upper boundary. Superscripts S and L will be used to 
designate, respectively, solid and liquid properties when required. 

2.2. Differential equations and boundary conditions 
The coupled effects of buoyancy-driven convection and phase changes will be 
described by thermal conduction in the solid and the Boussinesq equations in the 
liquid. 
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FIGURE 1.  Schematic drawing of a partially solidified layer. 

We have in the solid 
Tf3 = ,@VPT(S), 

and in the liquid 
( 2 . 1 ~ )  

1 

Po 
~t +u.VV = - ~ V ~ + V V ~ V + [ O I ( T ( ~ ) - ~ , ) + O I ' C ( ~ ' ] ~ ~ ,  (2.1 b)  

(2.1 c )  

( 2 . 1 4  

( 2 . l e )  

where k = ( O , O ,  1 ) .  ( 2 . V  1 
We have used a linear equation of state for the density in the buoyancy term of (2.1 b)  
and T,, is a reference temperature to be defined shortly. 

At the interface at  z = 7, we ignore capillary undercooling (the Gibbs-Thomson 
effect) so that 

(2 .2)  

The jump in heat flux is balanced by the production of latent heat L: 

T(L) = T(s) = T 
S' 

p(S)Lq t -  - [A(s)VT(S) - A(L)VT(L)]. d, (2.3) 

where n is the unit normal vector to the interface, 

n = (-%, - T y ,  I P - l ,  ( 2 . 4 ~ )  

and N =  (l+$+?j$)k (2.4b)  

Subscripts x,  y ,  z,  t represent partial differentiation. The common temperature T, of 
the interface, defined in (2 .2) ,  is unknown a priori since it depends on the 
concentration C(L) (defined in mole fraction, say) of the lean component at the 
interface. We write the equilibrium relation, depicting the phase behaviour, in a 
linear form: 

IyL) = T,, = T,, +m'OL). ( 2 . 5 ~ )  

Here m is the slope of the melting curve of an ideal mixture which is given by 

m' = -RTJL (2.5b)  

with R being the universal gas constant, L the heat of fusion of the solvent and T,, 
its melting temperature. The lean-component mass balance at the interface takes the 
form 

P ( s ) p  Tt  = p p j .  nN, (2.6) 
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since the concentration of the lean component in the solid is zero. Here the flux j ,  
allowing for Soret diffusion, takes the form 

j = -DIVC(L)-S,C(L)(l -C(L))VT(L)]. (2.7) 

where So is the Soret number. The interface is non-mobile but deformable so that 
there is the kinematic condition 

N p p u * n  = ( p f J - p k S ) ) v t  (2.8) 

(2-9) 

(2.104 

(2.10b) 

and the no-slip conditions 

where t(l) and t@)  are unit tangent vectors 

u.t(1) = 0 . p )  = 0 

t(’) = (1 + v;, - vz vy, Tz) (1 + q ; ) - W ,  

t ( 2 )  = (0,1, qzl) (1 + ?@i. 

At the upper plate at  z = h, the temperature is fixed: 

T(S) = T 1‘ (2.11) 

T(L) = To (2.124 

j - k  = 0. (2.12 c) 

At the lower plate at  z = 0,  the temperature is fixed, and the plate is rigid and 
impermeable : 

v = 0, (2.12 b) 

The equation (2 .12~)  gives the vanishing of the mass flux of the lean component. 
In order to define the mass of the lean component we imagine the whole layer to 

be occupied at  time t =  0 by a homogeneous two-component liquid with 
concentration C,. When the layer is partially solidified, there is the overall mass 
balance for this component, 

(2.13) 

where d represents the horizontal area of one spatial period in the convection. The 
z-integration interval reflects the absence of the lean component in the solid. 

2.3. Static solution 
The governing system possesses a static solution in which the interface is planar at 
z = 7 = hL, the velocity vector u is identically zero, the pressure p is hydrostatic and 
the temperatures are purely conductive. Here 

and 
- 2-h, 

h-hL 
T@’ = ~ o - ( q o - q - .  

( 2 . 1 4 ~ )  

(2.14b) 

Fields (2.14) satisfy conditions (2.2), (2.11) and ( 2 . 1 2 ~ ) .  The flux condition (2.3) 
further constrains the parameters so that 

(2.15) 
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where h = hs+hL; (2.16) 

we call A the height ratio. The absolute temperatures of the boundaries determine 
the fraction of solid present. Here T,, is the (concentration-dependent) interface 
temperature T, in the basic state. To determine the value of T,, and hence the 
temperature gradients, we must find c(L). We solve (2.1e) and (2.7) subject to 
condition (2 .12~)  and find that 

Cl“’ - so Q‘L’( 1 - C‘L’) p) = 0. (2.17) 

This automatically satisfies condition (2.6). The solution of (2.17), given p(,) from 
(2.14a), is 

(2.18) 

where the constant of integration, the interface concentration C(L)(h,) is determined 
through the conservation law (2.13). We obtain from 

that 

C,  h = lL gL) dz 

OL)(hL) = 

(2.19) 

(2.20) 

Given c(L), we have from (2.5a) the interface temperature T,,, 

T,, = T,,+m’C(’)(h,). (2.21) 

Thus, the thickness of the solid and liquid layers is determined by T,, T,, T,, and C,. 
In  particular, as A +. 0, the solid disappears. 

2.4. Dimensionless equations 
The equations (2.1) and the interfacial conditions (2.3) and (2.5)-(2.8) can be 
transformed into a dimensionless form by introducing the following scales : 

(2.22) 1 X , Y , Z  - h,, t N h;/tdL), U ,  V ,  w - dL’/hL,  

P - / I ~ ~ ’ V K ‘ ~ ’ / ~ ~ , ,  T-T, , -T,-T, , ,  Cc”-C0. 

The resulting dimensionless Boussinesq equations and interfacial conditions contain 
the following set of non-dimensional numbers : 

pi,) LK(L)  rn’ st = S = So(T,-qo),  m = - , C,. (2.23i-1) 
h(L) (T, - Z,) ’ T , - T , 0  
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The basic state (2.14)-(2.21) can also be written in non-dimensional terms as follows: 

p’ = 1-2,  T‘S’= A-1(1-z), (2.24 a, b)  

where 
exp [(l + A )  SC,] - 1 1 p ( l )  = - 

exp[S]-1 C,’ 

(2.24 c) 

(2.24d) 

(2.24e) 

Given the value of C(L)( l),  (2.21) determines the (dimensional) interface temperature 
T,, used in the scaling. 

2.5. Linear stability theory 

We perturb the governing non-dimensional system about the static basic state (2.25) 
and we introduce normal modes for each disturbance quantity q5’ as follows: 

q5’(z, y , z , t )  = @(z)exp[--t+i(k,z+k, y ) ] ,  ( 2 . 2 5 ~ )  

where k = (k ;+k$  (2.25 b)  

and introduce the velocity components 

v’ = (u’, v‘, w’). (2.26) 

We denote d/dz by D. I n  the following (W,  FL), T@), C(L), H) are the z-dependent 
normal-mode amplitudes of the corresponding disturbance quantities. We eliminate 
u’, v’, p‘ from the momentum equations by cross-differentiation to obtain 

(D2-k2) ( D 2 - k 2 + w P 1 )  W-k2[RT‘L’+R,PS~-1CoC(L)] = 0. ( 2 . 2 7 ~ )  

From the heat transport equation and the transport equation for the lean component 
we get 

( D 2 - k z + ~ ) T ( L ) + W =  0, (2.27 b)  
-DJ-k2[C‘L’-SC(L)(l-CoC(L)) T‘L’]+~S~P-lC(L)-S~P-lCLL) W = 0, (2 .27~)  

where - J = DC(L) -s[e(L)( 1 - C, c ( L ) )  DT(L) - (1 -2C, C(L)) C(L)]. (2.27 d )  

In  the solid, the heat conduction equation gives 

(D2 - k2 + W K - ~ )  !Ps) = 0. (2.28) 

The linearized boundary conditions for the ordinary differential equations (2.27) and 
(2.28) are as follows: 

on z = 0, T(L) = W = DW = J = 0; (2.29) 

, (2.30) on z = 1+A,  T(S) = 0 .  

on z = 1, 

(2.31 a) 

(2.31 b)  

(2.31 c) 

(2.31 d )  

(2.31 e )  

(2.31.f 1 
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We solve (2.28) subject to the conditions (2.30) and (2.31) and obtain 

T(S)(z) = [P + (A-1 - 1)  HI 2(5), ( 2 . 3 2 ~ )  

where 
2-1  - sinh6A(l-Y) 

A =  5 = - p  sinh 6A ' 
(2.32b, c) 

and 6 = (k2 - wK-1);. (2.32 d )  

We now evaluate condition (2.31 b ) ,  using (2.32), and eliminate H by using condition 
( 2 . 3 1 ~ ) .  We obtain 

DT(L)+{9[ l  +AmCoOL)(l)]-wpSt}{l +mCoC:L)(l)}-lT(L) 

- mCo[9( 1 - A )  -wpSt] { 1 + mCo C:")( l)}-' C(L) = 0. ( 2 . 3 3 ~ )  

Here (2.33 b)  

Condition (2.31 d ) ,  using (2.31c), becomes 

J = - w~SCP-~C(~) [T(~)  - mCo C(L)] [ 1 + mC o z  C(L)]-'. (2.33 c) 

Condition (2.31 e), using (2.31 c) ,  becomes 

while (2.31f) remains 
DW=O. (2.33e) 

The result of the linear stability analysis is a system of differential equations for the 
normal-mode amplitudes in the fluid and expressions for the corresponding boundary 
conditions at z = 0 and 1.  The boundary-value problem defined by (2.27), (2.29) and 
(2.33) is solved numerically using the SUPORT code of Scott & Watts (1975); see 
Zimmermann, Muller and Davis (1986) for details. 

2.6. Numerical results 
The numerical results in this section are obtained for a set of parameters typical for 
organic mixtures like cyclohexane-benzene. We use P = 17.6, Sc = 1047, R, = 28.4, 
St = 5.91, m = -80, K = A = p = 1.001. Here R, = (%-T,)-la'/a. 

2.6.1. The efSect of diffusion and conduction 
We first examine the pure Soret-convection problem in which the layer is all liquid 

and no solidified material is present; thus A = 0. Figure 2 shows for C,  = 0.01, the 
critical Rayleigh number, wavenumber and angular frequency as functions of S. 

When S = 0, there is no Soret effect and instability sets in as steady BBnard 
convection with R f )  = 1708, k f )  = 3.117 and w, = 0. Here w, is the value at  critical 
of the imaginary part of the o in ( 2 . 2 5 ~ ) .  When S > 0, the instability is still steady, 
w, = 0, and both RF) and kp) decrease with S, consistent with the results of Chock & 
Li (1975). When S > 0, the Soret diffusion moves the more dense component toward 
the cold boundary reinforcing the adverse density gradient. When S < 0, the 
opposite is the case and instability is opposed by Soret effects, as shown in figure 2 
and in the results of Chock & Li (1975). In addition, when 8 is sufficiently negative 
S < S* < 0, a new instability mode, periodic in time, occurs. The corresponding 
critical Rayleigh number R$) is smaller than R f )  for each S. The k i p )  is slightly 
smaller than k:) while the frequency w, of this oscillatory mode decreases with S with 
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2.5 .. 

I I 

\ I  

-0.005 s* 0 0.005 

FIQURE 2. Critical Rayleigh number R,, wavenumber k,, critical angular frequency wc, as a function 
of the Soret number S for an initial concentration C,, = 0.01, and height ratio A = 0. S* denotes a 
codimension-two point. 

S 

w, + 0 as S + S*. Thus, the steady and periodic modes merge as S -+ S*, resulting in 
a codimension-two point a t  S = S*. The present calculations give S* = -0.00025. In 
general Rip), k i p )  and w, all increase with JSI for S < S*. Platten & Legros (1984) 
discuss how S* depends on P ,  Sc and R,. The appearance of the oscillatory mode is 
the result of a double-diffusive mechanism in which the temperature and 
concentration distributions oppose each other and where their fields diffuse with 
vastly different time scales, rT and T ~ ,  respectively. Since rT < rc,  a warm fluid 
element that rises in the layer loses its temperature contrast in a time T~ well before 
its concentration contrast decays. The parcel thus becomes too heavy for its 
environment, and falls into a warmer layer. If this slower process is on a timescale 
T ~ ,  the density of the parcel adjusts to its surroundings, the parcel becomes lighter 
and rises again due to thermal buoyancy. The cycle then begins anew. Thus, the 
phase lag between thermal and solute diffusion leads to an over-compensating 
restoring force, which is responsible for the oscillatory mode. 

2.6.2. The effect of initial concentration 
We again examine the pure Soret-convection problem in the absence of solidified 

material but for different initial concentrations C,. Figure 3 shows how R,, k,  and w, 
depend on C,. All curves cross at S = 0 where Soret effects are absent. R t )  decreases 
with C, for S >  0 as expected since more of the lean component is present to 
participate in Soret diffusion. Again, as expected, k?) decreases with C, for fixed 
S > 0. When S < S* and the instability is oscillatory for fixed S all the quantities 



Bdnard convection i n  binary mixtures 667 

1.01 

S 
FIGURE 3. Critical Rayleigh number R,, wavenumber lc, and angular frequency o,, as a function of 
the Soret number S for the initial concentrations C, = 0.01 (solid line) and C, = 0.02 (dashed line), 
and height ratio A = 0. 

RIP), k$" and w, increase with C,. More detailed calculations (see Zimmermann et al. 
1986) show that both RIP) and kp) increase nearly linearly with C, for C, > 0.02. The 
above results are consistent with the idea that an increase in C, effectively increases 
S .  As can be seen from (2 .27c,  d ) ,  Soret diffusion enters the governing equations 
through a term of the form SOL)[l - C, C(L)]. The numerical calculations for A = 0 
show that C(L) is nearly linear in the range IdC(L)/dzl < Thus, t!?(L) - C, and if 
Ci < 1, then 

SC'L" 1 - c, C 9  x SC, = Self. (2 .34)  

An increase of C, is equivalent to an increase in IS[, consistent with the results of 
figure 3 .  Note that (2 .27d)  has a second term dependent upon S.  Given the above 
argument, it becomes independent of C,. 

2.6.3.  The eflect of the solidi$ed layer 
When the layer is partially solidified, A > 0 and all of the lean component has been 

rejected into the liquid. Figure 4 gives the critical conditions for C, = 0.01, and for 
the cases A = 0 (reproduced from figure 2 )  and A = 1. When S = 0, Soret diffusion 
is absent and there is thermal conduction in the solid and conduction and convection 
in the liquid. This case was treated by Davis et al. (1984).  They find that the presence 
of the solidified layer affects the thermal environment seen by the thermal 
perturbations in the liquid. When A = 0, the upper boundary of the liquid is a perfect 
conductor and as A increases, the heat transfer properties of this upper boundary 
deteriorate. Thus, the thicker the solid layer the lower the R, for the onset of 
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FIGURE 4. Critical Rayleigh number R,, wavenumber k, and angular frequency o,, as a function of 
the Soret number for the initial concentration C, = 0.01 and height ratios A = 0 (solid line) and 
A = 1 (dashed line). 

convection. This is seen for S = 0 in figure 4 where one finds RP)lA-l < Rp)lA-,. We 
saw earlier that, in the absence of a solidified layer, R t )  decreases with S. Thus, the 
two effects reinforce each other. We see that by making S < 0 and greater in 
magnitude the Soret effect stabilizes and hence there is a cross-over point 
(S  !z -5 x for A = 1.0) where the two effects balance and R f )  has the same value 
as for A = 0. 

The above behaviour derives from the property that the solid rejects lean 
component so that for a given C, its actual concentration in the liquid is greater the 
thicker the solid layer. Given the above approximation for c(L), (2.24e) implies that 
OL) x (1 + A )  C, so that now 

Seff z5 SC,( 1 + A ) .  (2.35) 

Thus, if A = 1, we have effectively doubled C,  or equivalently S.  
In summary, when S < 0, an increase in C, stabilizes the basic state, which is 

further enhanced by the increase in A .  When S > 0, the basic state is destabilized by 
the increase of A .  This destabilizing effect of increasing ice thickness for S > 0 is also 
found by Hadji & Schell (1990) in their recent calculations. 

2.6.4. The effect of the latent heat 
The latent heat affects the system in two ways: directly through the rate of 

solidification or melting via the Stefan condition (2.3) ; and indirectly through its 
influence on m, because m varies inversely proportionally to L ,  (2.5b), by modifying 
the melting temperature of the solid. 



BLmrd convection in binary mixtures 669 

0.5 S = -0.005 
-0.001 

- 0.00 1 
wc 

0 0.5 1 .o 0 0.5 1 .o 
A A 

FIQURE 5. Critical (a) wavenumber k,, ( b )  angular frequency w, and (c) Rayleigh number R, aa a 
function of the height ratio A for the initial concentration C, = 0.01 for the two Soret numbers 
S = -0.001 and 0.005, and for two different Stefan numbers St = 5.91 (solid lines) and 11.82 
(dashed lines). 

We now double the value of the latent heat used in the pressure calculations : L is 
changed from 31.3 to 62.6 kJ/kg. The calculations show that the marginal curves of 
RF) and kr) are changed by less than 0.1 YO. This occurs via the modification of m by 
latent heat through changes in q,,, (2.5a, b ) .  This variation of T,, is very small 
( < 1 %) for the considered ranges of C, and A .  

Figure 5 shows the effect of the enhanced latent heat on the marginal curves l i p ) ,  
kp) and 0,. The calculations have been performed for C, = 0.01, a range of A ,  and for 
two values of the Soret number S = -0.001 and -0.005. The graphs show that RP) 
is only slightly increased and kp) is practically unchanged when the latent heat is 
doubled (see figure 5a, c ) .  However, a noticeable decrease of the angular frequency 
w, is found. This effect is stronger for negative values of S and 1st large. It depends, 
moreover, on A and C, (figure 5 b ) .  

During the oscillatory convection, local solidification and melting occurs at  the 
interface. In the local freezing and melting process larger amounts of heat must be 
transported by conduction in the solid for higher values of the latent heat. This 
requires more time under externally fixed thermal boundary conditions. Hence, the 
increase of L should decrease w,. 

In  summary, an increased latent heat influences only slightly the critical Rayleigh 
number and the wavenumber, though the angular frequency decreases noticeably. 

3. Experiments 

3.1. Experimental techniques 
The experiments are performed in a test apparatus, which is similar to the one 
described by Dietsche & Muller (1985) and sketched in figure 6. A rectangular test 
volume of aspect length :width :height = 200 : 20 : 3.12 mm, is chosen in order to 
foster the generation of regular-roll convection patterns. The volume is demarked by 
two copper blocks which serve as the upper and lower boundaries. Crystal glass 
plates form the long sidewalls. Two Teflon blocks are placed between the copper 
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FIGURE 6. Cross-section of the test apparatus. 

blocks and simultaneously serve as spacer elements and the shorter sidewalls. O-rings 
are employed to seal off the cavity. The copper blocks are heated or cooled by 
circulating temperature-controlled coolant from thermostats through jackets a t  the 
upper and lower end of the two blocks. The overall design of the test apparatus is 
based on three-dimensional heat-conduction calculations that provide to a very good 
approximation a linear temperature distribution across the cavity in the pre- 
convective state. According to calculations, horizontal-temperature inhomogeneities 
are less than 0.1 % at the ends of the long sides and less than 0.01 % otherwise. Nearly 
ideal temperature conditions before onset of convection are needed to investigate the 
transition to oscillatory flow, since even the smallest convective motions, due to 
temperature inhomogeneities, may disturb significantly the concentration profiles in 
the layer. The test apparatus is insulated externally by a Styrofoam cover all of 
which is placed in an air-conditioned chamber with good temperature control. The 
air temperature in this chamber is kept a t  the mean temperature, T = +(T,+ q), of 
the test liquid during the experiments. This procedure proved to be necessary for 
tests with solidification at  temperatures significantly lower than the laboratory 
temperature. 

The selection of a suitable test liquid is crucial for a clear experimental 
identification of the phenomena. For our experiments the following requirements 
had to be met : a sufficiently negative value of the Soret coefficient, good transparency 
of the liquid for employing visualization technique, near-ideal liquid solution with 
constant physical properties and a linear density-temperature -concentration 
dependence (i.e. Boussinesq properties), solidification of pure material (complete 
rejection of solute) when the temperature falls below the liquidus temperature. 

After thorough pretests employing cyclohexane-benzene mixtures and ethyl 
alcohol-water mixtures the latter was chosen as a test liquid mainly because of its 
strong Soret effects. Alcohol-water mixtures have been used frequently in the past 
by, among others, Hurle & Jakeman (1971, 1973a, b ) ,  Villers & Platten (1984) and 
Lhost & Platten (1988, 1989). The physical properties of this mixture are well 
documented in the literature. In  particular the effective Soret number Seff which 
characterizes the thermal diffusion effect can be varied between negative and 
positive values by changing the concentration of the solute (see Kolodner, Williams 
& Moe 1988c) and the mean temperature in the test liquid. Moreover, only pure water 
is solidified from such dilute mixtures. 
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Just as pure water has a density maximum at 4OC, low-concentration 
alcohol-water mixtures may have such maxima near their solidification temperatures 
T,. They occur for alcohol concentrations C < 14 wt  YO but not otherwise, though 
even for C > 14 wt YO the mixture may still have nonlinear density profiles in the 
basic state. The solute concentration affects T,, and hence the scaling for S, (2.23j). 
Increasing the solute concentration shifts the operating point for negative S toward 
S*, which leads to oscillations of both low frequency and intensity. As a compromise, 
a mixture of 15 wt % ethyl alcohol and water is used in all experiments with partially 
solidified layers. According to D'an-Lax (1967), T, = - 7.6 "C. 

The mixture of water and ethanol fulfils the requirement that the solute is 
completely rejected from the solid phase. Ott, Goates & Waite (1979) measured the 
phase diagram of water-ethanol very precisely, and for concentrations of ethanol 
used in our experiments, find that the solidified material is pure-water ice. 

The quality of the measurement is determined by the long-term constancy of the 
temperatures at the upper and the lower boundaries of the test cavity. These 
temperatures are controlled by two high-precision Haake thermostats of a coolant 
outlet-temperature variance AT = kO.01 "C. At low temperatures ethyl alcohol is 
used as a coolant. The thermostats are connected to the test apparatus by plastic 
hoses isolated by thick rubber-foam wrappings. 

The flow in the cooling channels of the test apparatus is counter current. The 
temperatures in the copper blocks are measured by precision platinum-resistance 
thermometers which are threaded through bore holes in the copper blocks very close 
to the boundaries of liquid layer. The measuring arrangement used determines the 
temperature difference across the layer to an accuracy of d(AT) = k0.002 K. The 
quality of the temperature control of the test apparatus may be judged by the fact 
that for static or stable-flow conditions in the liquid layer the measured temperature 
difference is constant up to S(AT) = k0.003 K. 

The temperature fluctuations within the liquid layer are measured by a NiCr-Ni 
thermocouple of 0.25 mm in diameter protruding 0.9 mm into the test volume from 
the lower copper boundary. The thermocouple is located at  the centre of this 
boundary. The voltage between this thermocouple and a reference thermocouple in 
the lower copper block is recorded. This voltage is amplified and further processed to 
give signals of the temperature oscillations 5"' in test liquid as a pen-chart record. The 
resolution of the temperature oscillations is ST = k0.02 K. From the chart records 
the period T of periodic temperature fluctuation can be evaluated by averaging over 
a sequence of 20 periods to an accuracy of ~ T / T  x 0.01. 

The convective flow in the test volume is visualized by employing a differential 
interferometer (see Buhler, Kirchartz & Srulijes (1978), Kirchartz (1980) for an 
outline of the technique). In general the differential interferometer generates lines of 
constant density difference in the direction of the beam separation. If the separation 
length e is small as in the present case, e = 0.3 mm, lines of constant density 
difference become lines of constant temperature gradient. The interferometer beams 
integrate the density differences only in one direction through the test volume, as is 
the case in the present set-up (see figure 6). A quantitative evaluation of the fringe 
pattern is only possible for perfectly two-dimensional flow. Since experiments with 
corrugated interfaces have significant three-dimensional disturbances, we use the 
interferograms for qualitative information only. In the present experiment only 
horizontal beam splitting is used. Buhler (1979) has shown for slightly supercritical 
conditions that the fringe pattern generated from horizontal beam splitting can be 
interpreted to a good approximation as the streamline pattern for two-dimensional 
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convection patterns, The interferograms are recorded by a high-resolution video 
camera. Further processing is performed by employing a digital image- processing 
system. Each interferogram shown in figure 8 shows a segment of 43mm of the 
200mm test volume. In order to take interferograms from each part of the test 
volume the interferometer is placed on an optical bench that can be moved 
transversely in a controlled manner. When there are moving cellular patterns, 
quantitative determination of wavelengths and the direction of the pattern 
movement can be made if one examines interferograms taken at distinct time 
intervals. 

The thickness of the ice layer is measured and photographed with the aid of a 
mobile stereomicroscope. Using magnifications of up to 22 times, the liquid-layer 
height is determined to an accuracy of AhL = k0.02 mm. Since the height ratio and 
Rayleigh number are based on the liquid-layer height, they, too, are affected by 
errors of the same order. 

3.2. Experimental results 

We begin by summarizing briefly our observations from tests with liquid mixtures 
without ice. In  this case the mean temperature in the test volume is well above the 
solidification temperature T, of the test liquid. These observations will be needed 
later for comparison with the partially solidified layer. For more details see the 
Zimmermann (1990), and Zimmermann & Muller (1992). 

If the temperature difference across the layer is raised quasi-steadily, the static 
state of heat conduction becomes unstable and convection starts in the form of a 
moving cellular pattern. This pattern is commonly interpreted as a travelling wave 
(TW) (see e.g. Walden et al. 1985; Moses & Steinberg 1986; Linz et al. 1988). The 
interferograms show that under fully developed conditions roll cells with axes 
parallel to the shorter side of the test cell move from one end of the cell to the other. 
Owing to small temperature inhomogeneities, the roll cells are first generated a t  the 
ends of the test volume and propagate towards the centre. The moving roll cells are 
sensed by the thermocouple in the cell centre as a time-periodic temperature 
fluctuation. For Rayleigh numbers near critical the temperature signal shows time- 
modulated amplitudes which increase exponentially, though, slowly with time. The 
growth rates depend on the amount by which the Rayleigh numbers exceed the 
critical value. During this period of the developing TW-convection, the observed 
oscillation frequency is constant. When the intensity of the TW-convection, as 
characterized by the amplitude of the oscillating temperature signal, exceeds a 
threshold value, the modulated TW-convection mode saturates via a short transient 
to a permanent oscillatory state of constant amplitude. During this short transient, 
the period of oscillation increases typically from 7 = 37 to 500 s for a mixture of a 
concentration C,  = 15 wt % and a mean temperature = 10 "C, thus indicating the 
nonlinear character of this transition. The experiments show, furthermore, that the 
state of permanent finite-amplitude travelling waves exists only in a limited range of 
Rayleigh numbers in which the period of oscillation increases monotonically with 
increasing Rayleigh number. 

If the Rayleigh number is increased quasi-steadily past a second critical value 
R,(R, = 1.59RC for C,  = 15 w t % ,  and T = 10 "C), the permanent travelling wave 
becomes unstable and a jump transition (see e.g. Moses & Steinberg 1986 and Surko 
et al. 1986) leads the system to a stable state of steady convection (commonly called 
overturning convection). The transitions from the static state to the stable travelling 
wave and a t  higher Rayleigh numbers from travelling waves to steady convection 
are hysteretic, indicating that both states may originate from subcritical bifur- 
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cations.? Experiments conducted at  lower mean temperatures of the liquid and for 
lower initial concentrations show that the range of Rayleigh numbers in which 
permanent travelling waves can be observed shrinks. If with C, = 15 wt % the mean 
temperature of the layer is reduced below T = 5 "C, a permanent state of travelling 
waves is not observed. Rather, at the onset of convection the transient state of 
modulated travelling waves evolves directly to a steady-state convection. It is 
conjectured by Zimmermann (1990) and Zimmermann & Muller (1992) that the 
significantly nonlinear density-temperature relation destabilizes the travelling wave 
when the temperatures are near !& 

Density measurements show that mixtures with ethanol concentrations less than 
14 wt % have, like pure water, a maximum in the density. By using an ethanol 
concentration of 15 wt %, this anomaly can be avoided, though the density still 
depends nonlinearly on the temperature. 

To estimate such non-Boussinesq effects, it is necessary to know the temperature 
dependence of the density. From data given by D'an-Lax (1967) for the 
temperature range -5 < T < 30 "C we get for a mixture with C, = 15 wt% 
ethanol thermal-expansion coefficients of a = 0.000238 K-' at T = 10 "C and 
a = 0.000188 K-l at 5 "C; this constitutes a decrease of about 27 Yo. 

Another indication of non-Boussinesq behaviour is given by our experiments done 
at  T = 10 and 5 "C. The reduced Rayleigh numbers for the onset of the travelling 
waves (without ice) are, respectively, 1.27 and 1.89. These values correspond to 
critical temperature differences of 11.5 and 22 "C. The higher temperature differences 
required to destabilize the heat-conducting state at lower mean temperatures are 
largely attributable to the nonlinearity of the density profile. 

We now turn to experiments on partially solidified layers of ethyl alcohol-water 
mixtures with C,, = 15 wt YO. We start with the static basic state of heat conduction 
and thermal mass diffusion. The temperature q of the upper copper block of the test 
cell is lowered quasi-steadily below T, of the mixture, producing a thin ice layer at 
the top of the liquid layer. By adjusting q in the range T, = - 7.6 > > - 16.65 "C, 
ice layers of thicknesses h,, 0 < h, < 0.87 mm, are generated. Next, the temperature 

of the lower boundary is raised in several small steps of up to AT = 0.4 K. The 
temperature increase per step is conducted over a period of 30 min. Several hours are 
left between each step in order to assure local thermal equilibrium everywhere in the 
test volume. When the critical temperature difference A@:) in the liquid layer is 
exceeded, convection is observed in the form of modulated travelling waves (MTW). 
Figure 7 shows a typical signal of the temperature oscillations recorded by the 
thermocouple in the cell centre. In this case the basic-state thickness of the ice layer 
is hs = 0.11 & 0.02 mm. 

A temperature increase at  the lower boundary from T, = 16.49 to 16.97 "C in 
30 min triggers the TW-convection mode at  one corner of the test cell. As in the case 
of TW-convection in layers without ice, new convection rolls of varying intensity and 
wavelength are consecutively formed at the particular corner of the test cell pushing 
the previously formed rolls ahead towards the cell centre and beyond. As a result of 
this generation process, a modulated wave train whose amplitude grows in time 
travels through the liquid layer from one end of the test cell to the other. Given fixed 

t Recently, Kolodner et al. (1988~)  have demonstrated by their experiments in annular 
containers that the jump transition, as well as the hysteresis effect, for the transition from 
travelling waves to overturning convection and vice versa is related to the pinning of the 
convection rolls by the endwalls of finite test cells. For their annular test cell they do not observe 
these features. 



674 G .  Zimmermann, U.  Miiller and S.  H .  Davis 

FIGURE 7. Signal of the temperature oscillation recorded by the thermocouple in the centre of the 
test apparatus, with initial concentration C, = 15 wt %, temperature difference across the layer 
AT = 26.02 K, height ratio A = 0.03, and period r = 29.3 s. 

t = O s  

5 s  

10 s 

15 s 

20 s 

FIGURE 8. Set of interferograms recorded by a video camera at  time intervals of At = 5 s. The 
interferograms show a modulated travelling wave for initial concentration C, = 15 wt YO, 
temperature difference across the layer AT = 29.58 K, height ratio A = 0.10, and period T = 26.3 s. 

external temperature conditions, the period of time for individual rolls to  cross the 
thermocouple is fixed. For the conditions in figure 7 the period is 7 = 29.3 s. An 
optical impression of the travelling wave mode is obtained from the sequence of 
interferograms in figure 8. The interferograms show a section near the centre of 
the test volume. The interferograms are taken at  equal time intervals of At = 5 s. 
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FIGURE 9. (a) Experimental (H) and calculated (0)  values of the critical Rayleigh number aa a 
function of the height ratio for initial concentration C, = 15 wt % ; the dotted curve gives the effect 
of Y(C) according to Lhost et al. (1991). (b)  Experimental (m) and calculated (0) values of the 
oscillation period aa a function of the height ratio, for C, = 15 wt YO ; the dotted curve gives the 
effect of Y(C) according to Lhost et al. (1991). 

The thickness of the ice layer is h, = 0.3 f0.02 mm and the temperatures at the 
boundaries are T, = 19.20 "C and = - 10.38 "C, respectively. From the shift of 
the fringe patterns of consecutive interferograms the direction of propagation of the 
wave train from left to right is clearly recognized. Moreover, the growing density of 
the fringes from the right to the left side of each interferogram indicates increasing 
intensity of the convection due to amplification and/or modulation in time. A 
quantitative evaluation of the interferogram sequence gives a period of oscillation of 
7 = 26.3 s. This value is also obtained from the chart record of the temperature 
fluctuations. 

The onset of convection in the form of travelling waves is investigated 
systematically for different values of the ice thickness. For each thickness of the ice 
layer the critical temperature difference across the liquid layer at the onset of 
convection, and the period of the travelling wave are measured. From these 
measured values the critical Rayleigh number for onset of convection, the height 
ratio, and a dimensionless period T of oscillation are evaluated. For the evaluation of 
the Rayleigh number one has to take into account that the concentration in the 
liquid phase increases with increasing thickness of the ice layer due to solute 
rejection. This in turn affects directly the melting temperature at the interface and 
some physical properties of the liquid such as the coefficient of thermal expansion. 
The material properties at mean temperatures of the liquid and solid phase are used 
for the evaluation of the dimensionless groups. The critical Rayleigh number and the 
dimensionless period of the travelling waves at onset of convection are plotted versus 
A in figure 9 (a ,  b) .  These plots show clearly that the critical Rayleigh number, as well 
as the period of the travelling wave motion, decrease with increasing ice-layer 
thickness. 
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For a comparison between experimental data and theoretical prediction the 
calculations of the critical parameters for onset of convection have been repeated for 
the particular conditions of the experiment. As input data of the experiment, the 
following quantities are used: C, = 0.15, Pr = 30, Sc = 8900, St = 24.7, R, = 173.4, 
S = -0.019, m = - 14.4. The calculated values R,, and 7, are also shown in figure 
9(a, b )  together with the experimental data. The graphs show generally good 
agreement between the calculated and experimental curves. The monotonic decrease 
of the critical Rayleigh number with increasing thickness of the ice layer can be 
explained by the insulating effect of the ice a t  the upper boundary. An equivalent 
observation has been made by Davis et al. (1984) and by Dietsche & Muller (1985) in 
their experimental and theoretical investigations of a single-component liquid layers. 
There is, however systematic deviation between the curves in figure 9(a). The 
predicted Rayleigh numbers for the onset of travelling waves for all values of A 
considered are smaller than those of the experiments. The main reasons for this 
discrepancy are that (i) the experiments are carried out in a test volume with one 
lateral dimension relatively small, and (ii) the nonlinear density-temperature 
relation near the melting temperature T,  of the liquid makes the thermal expansion 
coefficient a strongly varying function of temperature. Our stability analysis assumes 
an infinitely wide layer and a linear density versus temperature relationship. 

Figure 9 ( b )  shows that the period of oscillation also decreases monotonically with 
increasing A .  This behaviour is also readily explained on the basis of the linear 
stability theory. I n  liquid layers without ice the frequency of oscillation decreases 
when the Soret numbers decrease (see figure 4). In  our case where the top of the layer 
is pure ice and the solute is completely rejected, the actual concentration of the liquid 
mixture beneath the ice is increased. Considering different static states for different 
ice-layer thicknesses, the increasing solute concentration affects the system as if S 
were replaced by S( 1 + A ) .  This can be immediately seen from the definition of the 
Soret coefficient See, = SC( 1 - C) for C 4 1.  An effectively reduced Soret coefficient 
leads to higher oscillation frequencies. 

When C is not so small, there is a significant dependence of the Soret coefficient on 
C as shown by Kolodner et al. (1988~).  To estimate this influence on the critical 
Rayleigh number and the oscillation period we define the separation coefficient 
Y = (a’/a) So C,( 1 - C,). For concentrations higher than 0.15 Kolodner et al. (1988~) 
found dY/dC = - 3.8 at Y = -0.43 or C, = 0.15. An increase of the ice layer causes 
an increase of the concentration in the liquid and therefore the separation coefficient 
changes to Y ( C )  = Y(C,)+dY/dC(C,)(C-C,). To calculate the influence of a 
concentration dependence of the separation coefficient on R, and 7, the approximate 
formulae of Kolodner et al. (1988b) or of Lhost, Linz & Muller (1991) can be used. 
Both approximations are valid for small or zero Lewis numbers and their results 
differ by less than 1 %. We have used equations (14)-(16) of Lhost et al. (1991) to 
calculate R,(A) and 7,(A).  The results are represented by the dotted lines in figure 
9(a, b) .  It is shown that for A = 0 the approximate solution and our numerical 
solution agree quite well, within 2 %. Increasing ice thickness leads to an additional 
decrease of R, and 7, due to increasing Y-values. For larger A ,  this effect is reflected 
in the stronger decrease of the experimental data compared with the calculated 
values. It is conjectured that the remaining discrepancy between the numerical and 
experimental values is mainly due to the finite geometry and the nonlinear density 
profile of the basic state. 

When there is an ice layer at the upper boundary of the test volume, a permanent 
state of TW-convection is not observed. Whenever the amplitude of the temperature 
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(4 
FIQURE 10. Photos of the ice surface at the upper boundary of the liquid layer taken by a 
steromicroscope with magnification (a )  5 x and (b )  9 x , respectively, with initial concentration 
C, = 15 wt%, and thicknesses of the ice layer (a )  A = 0-0.03, (b)  A = 0.114.18. 

fluctuation near the ends of the test volume exceeds a threshold value, the travelling- 
wave motion in the cell dies out, starting from the cell ends. This is replaced by a 
three-dimensional steady convective pattern. The ice surface shows corrugations 
indicating polygonal cell structures of convection in the liquid. The two photos in 
figure 10 show typical examples for a thin and a moderately thick ice layer. The 
photos are taken with the aid of a stereomicroscope, which is focused on the ice 
surface from below at small angle of inclination. The magnifications are 5.3 and 8.8 
for figure 10(a, b)  respectively. In the case of very thin ice layers, h, = 0.1 mm, the 
copper surface is covered with isolated islands of ice separated by patches free of ice ; 
the upflow melts the ice creating the patches, and the islands mark regions of 
downflow. Photos show the situation for an ice layer of thickness h, = 0.45 mm. The 
deep, three-dimensional corrugations of the ice interface can be clearly seen. The 
pattern is stationary under fixed external boundary conditions within the test 
volume, except near the ends where slightly non-homogeneous temperature 
distributions give rise to local fluctuations of the cell boundaries. 
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4. Conclusions 
BBnard convection of a two-component liquid is considered. The liquid displays 

Soret effects and the boundary temperatures are fixed to span the solidification 
temperature T, of the mixture. Near the lower, heated plate the material is liquid and 
near the upper, cooled plate there is a layer of pure solid solvent; all the solute is 
rejected during freezing. 

Linear stability theory is examined for the case of layers of infinite horizontal 
extent. The main parameters that occur are the thermal Rayleigh number R,  the 
layer height ratio A = h,/h,, and the Soret coefficient S. 

When there is no solid, A = 0, there is a critical value S* of S with S* < 0. When 
S > S* there is only steady convection, and when S < S* there are two branches of 
convection, one steady and one time periodic. The present calculations coincide with 
those of Chock & Li (1975) in this case. When solid is present, A 9 0, there are 
modifications of &*,Re, the angular frequency w, and the wavenumber k,. The 
tendencies of these changes are explained in physical terms. 

Experiments are performed in a rectangular box of dimension 200 x 20 x 3.12 mm. 
Mixtures of 15 wt % ethyl alcohol in water are used. The solid phase is pure ice from 
which all the alcohol has been rejected. Interferometry and photography are used to 
visualize the patterns and a thermocouple placed near the centre of the lower plate 
senses temperature fluctuations in the layer. 

When ice is absent and the mean temperature T is sufficiently high, say T x 10 "C, 
small, travelling-roll-cell perturbations are observed to vary slowly in their 
temperature intensities and move from one end of the test cell to the other. This state 
of modulated travelling waves is unstable for long times. Their amplitudes increase 
linearly with time and when they exceed a certain threshold value, the modulated 
travelling rolls settle down to a permanent state of travelling waves of constant 
amplitude. The state of permanent travelling waves exists only in a limited range of 
Rayleigh numbers in which the angular frequency decreases monotonically with 
increasing Rayleigh numbers. Moreover, there are two hysteretic jump transitions : 
(i) from the permanent state of travelling-wave motion to the steady state of 
overturning convection, and (ii) from the state of travelling-wave motion to the 
static state of heat conduction. These observations are in qualitative agreement with 
observations of Kolodner & Surko (1988), Fineberg et al. (1988a), Heinrichs et al. 
(1987) and Kolodner et al. (1988a, b )  and with the theoretical predictions of Linz et al. 
(1988). 

When ice is absent and the mean temperature is near enough to T,, then 
Zimmermann (1990) and Zimmermann & Muller (1992) observe that the travelling 
waves do not represent a permanent state as they do at higher temperatures, but 
undergo a transition to steady (overturning) convection even for S < S*. They 
attribute this change to the presence of nonlinear density-temperature profiles in the 
basic state. 

When ice is present, the system undergoes the usual transitions to travelling-wave 
motion. This travelling-wave mode has critical values R,, w,, k, that are well 
described by our linear stability theory though there are systematic differences that 
are attributable to the presence of sidewalls in the cell and the effect of a nonlinear 
density-temperature distributions near T,. 

When ice is present, the travelling waves do not represent a permanent state as 
they do when A = 0 and the mean temperatures are high enough, but instead 
undergo a transition to steady convection even though S < S*. 
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When the mean temperature 5? is sufficiently high, travelling waves are a 
permanent state. When it is near enough to T, or the layer is partially solidified, the 
travelling waves do not persist but evolve to a stationary, polygonal, cellular 
pattern. There is no present theory for this behaviour though we conjecture here that 
it is due to the combined effects of the nonlinear density-temperature characteristic 
and the presence of the solid-liquid interface. Both of these act as non-Boussinesq 
effects on the nonlinear structure of the convection. A stationary three-dimensional 
cellular pattern has been observed by Dietsche (1984), Davis et al. (1984) and 
Dietsche & Muller (1985) in the case of pure fluid with partial solidification. The 
transition to a steady three-dimensional hexagonal flow is explained in their work by 
the coupling of interfacial corrugations with convection. Such corrugations have the 
same effect on pattern formation in steady convection as do other non-Boussinesq 
properties of a liquid (Davis & Segel 1968). The experiments of Zimmermann (1990) 
and Zimmermann & Muller (1992) in layers of mixtures of alcohol and water without 
ice show that at  low mean temperatures only steady convection is a permanent state. 
At low temperatures the density of alcohol-water mixtures depends nonlinearly on 
the temperature. Such distributions also give rise to non-Boussinesq-like effects (see 
Krishamurti 1968). Recently, Hadji & Schell (1990) published the results of their 
nonlinear theory for a binary system coupled with a solid-liquid interface and a 
positive Soret coefficient. They found that near the convective threshold hexagons 
are the only stable states. 

We conjecture, therefore, that Soret convection with significant non-Boussinesq 
effects will lead to steady (overturning) convection instead of the travelling-wave 
convection that is observed otherwise. In the present experiments the final 
convective state has polygonal structures that would presumably be hexagonal if the 
sidewalls were not as closely spaced as they are in the experiment. 
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